设为首页  加入收藏  旧版网站
 松原教师研修网与您相约 伴您成长,今天是
首页(Home) > 研修资源 > 报刊精品 > 正文
小学数学教学案例
发布日期:2013/8/19 14:34:07  浏览人数:9551  编辑:科研处
摘要:
素养大赛案例分析及新课标解读一网打尽 (小学数学)
一、创设问题情境的案例:
  (一)案例一:《千克的认识》问题情境的创设:
  师:同学们请认真看图(教师动画播放大象和蚂蚁拉手腕比赛,比赛刚开始,蚂蚁就败下阵来,全班学生哈哈大笑)
  师:笑过之后应该有思考,这样的比赛公平吗?
  生:不公平。
  师:为什么?
  生:它们的力气相差太大,一个属于重量级,一个属于轻量级。
  师:你是怎样知道它们谁轻谁重的?
  生:用眼睛看出来的。
  师:你很会观察,还有吗?
  生:可以用体重计测量出他们的体重,比一比就知道了。
  师:你的方法很独到。见过体重计吗?(教师借助学生已有的经验引出重量单位--千克。)
  (二)案例二《  9  加几》问题情境的创设:
  师:春节就快到了,张老师决定带同学们去游乐场玩。(话音刚落,教师随即播放出幻灯片)小朋友们,快来看,她们已经到了游乐场!从这里你都发现了什么啊?学生听后教师的提问,都认真地观察屏幕上的主题图,大家踊跃地举手发言,在学生的诸多回答中,有这样新奇的回答:
  生 1:我发现游乐场里有许多树。
  生2:我发现了有一位女同学在往卖气球的阿姨那跑,我想她可能是要买些漂亮的气球吧。
  生3 (好像发现了什么宝贝,兴奋地说):老师,我发现图的右下角有几条白,我想是草地里有毛毛虫吧?
  针对上述这三种回答,这位教师并没有给予学生即时的评价,因为学生这样的回答,可能是教师意料之外的……
  (三)反思:
  1、案例一教师对学生中存在的每一个问题精心剪裁,目的明确,结合教学目标选择了具有典型性和代表性的问题,围绕教学重难点,设计成层次递进、环环相扣的问题组,诱导学生逐步认识到问题的关键所在,使得学生集中精力,突出重点,突破难点,掌握了一定的方法和技能。
  2 、案例二教师利用现代化教学手段创设问题情境很新颖,但其所提的问题不明确且过于宽泛,使学生摸不到头脑,正是因为这样宽泛的一问,使得她把学生思维引入到了广阔的背景之中。这时学生根据自己已有的生活经验和思维,在这样宽泛的问题情境中,思维迁移起到了作用,他们会把自己所看到不确定的事物进行大胆想象。整个问题情境的创设中,教师只注重了一些形式上的东西,并没有认真考虑。所以造成了在这个问题情境中,产生那么多与数学无关的回答,使课堂陷入无数学问题中,离题万里。虽然在这样的问题情境中学生积极发言,看起来很热闹,但却达不到教学目标。
  3 、问题情境创设的重要性已被广大小学数学教师所接受,并注意在课堂教学中加以实施。因为问题可使学生产生困惑,进而产生不满足感。所以说,恰当的数学问题情境能拨动学生的思维之弦,激发学生的思维火花,成为学生主动探索数学领域的动力。然而,一些教师仅仅为了追求“时髦”,不顾学生的感受,课前花费不少精力,绞尽脑汁设计出“引人入胜”的问题情境,但结果却事与愿违。这样的问题情境不但不能为课堂教学提供有效的服务,还会影响数学课堂教学目标的顺利达成,导致教师形成新的错误的数学教学观念。陈祥文在《关于创设问题情境的思考》中认为:问题情境的创设,一般要遵循以下几方面的原则:一定的新颖性,灵活的技巧性,明确的目的性,适度的障碍性。
  二、提出问题的教学案例:
  (一)案例一在教学《圆的认识》时,
  教师演示“小狗和小熊推车比赛”图,让学生猜一猜,谁的车子让人感到舒服?
  生1:当然是小狗的,因为它的推车轮子是圆的。
 生2:小熊的推车的轮子是方的,人坐上去会觉得很颠簸,不舒服。
  产生问题:为什么车轮都是圆形?圆形到底具备了哪些特征?
  (二)案例二
  师:老师这件衣服漂亮吗?
  生(齐说):漂亮!
  师:对于这件衣服,你想说什么?
 生1:老师,你这件衣服是哪儿买的?
生2 :这件衣服花了多少钱?
生3这件衣服是哪儿生产的?什么牌子?
  (三)反思: 
1、在案例A中,以“为什么车轮都是圆形?圆形到底具备了哪些特征?”来要求学生进一步思考,有助于激发学生的求知欲、学习动机和学习兴趣,并可促进学生积极地投入到数学活动中去。不仅为教学做了很好的铺垫,还激发了学生探究圆的特征的积极性。
  2 、案例二老师浮浅的问题,使学生不用思考脱口而出就能回答,不能引起学生们积极思考。这样使课堂陷入无数学问题中,虽然课堂上学生积极发言,看起来很热闹,但却达不到教学目标。
  3 、我们教师应该想方设法地要以“问题”为突破口,捕捉学生智慧的“火花”与“灵感“,推动学生不断发现和提出新问题。因此教师要精心设计探究性问题,激发学生思维动力,并提供充足时间和空间,拓宽学生思维广度。
  三、解决问题中的案例
:分桃子-除数是一位数的笔算除法。(三年级上册)
  (一)案例
  A :1  、呈现例题:计算48 ÷ 4
  2 、教师提问:这个问题如果要你用笔算,你会怎样算?
  3 、学生自主活动。(几分钟后,还没有学生找到基本方法)
  4 、教师并没有介入,而是组织学生小组讨论。(几分钟后,还没有学生找到基本方法)
  5、教师不得不自己讲授基本的计算方法。
  (二)案例
  B :1、呈现例题:计算 48 ÷4
      2  、学生自主活动:用小棒代替桃子,分一分。并交流结果
     3 、结合直观操作的过程及学生已有知识让学生口算。
    4、结合口算过程,教师讲授用竖式计算的方法。
  (三)认识分数的教学案例
  1、创设情境后,提出问题:怎样表示一半?
  2 、学生折、剪。(用直观的方式表述)
  3 、画直观图。(用半直观半抽象的图形语言表述)
  4 、教师引导学生从感性经验中创生数学符号。(用数学符号这种抽象的方式表述)
  怎样用数来表示一半?
  (1)学生合作学习,交流。(学生创生出不同的数学符号)
  (2)师小结:同学们创造了这么多的表示方法,大家的创造都有道理。为了便于交流,我们统一表示成  ,板书分数符号。
  (四)反思:
  1 、案例 A中学生的自主活动和小组讨论都是缺乏引导的。对于除法的笔算,从形式上分析,与加减乘三种运算的笔算过程有很大不同,学生如果没有自学过课本,一般不会想到,原有的加减乘三种运算的笔算经验只会带来负迁移。对于一种全新的知识,由于教师没有给予适当的引导或讲授,所以学生碰到困难是很自然的。
  2  、教师要引导学生认识二分之一的过程,可以看成是个性化再创造的过程,逐步组织操作,画图等活动让学生积聚感性经验,凭借直观操作和图形展开思维,形成的认识成为后续学生的“生长点”。当让学生自主创生新的表示方法时,学生都能有意义地进行个性化的符号表示,水到渠成地进行抽象思维,再在教师的引领下有意义地建构起抽象的分数二分之一。
  3、教学过程是学生自主建构与教师价值引领相统一的过程,解决课堂教学有效性问题的关键就在于既要真正体现学生的主动性,又要努力发挥好教师的引领作用。教师的正确引领是保证学生学习方向性和有效性的重要前提。
  4、数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,这个过程是学生从已有的数学现实出发,经过自己的思考,得出有关结论的过程。在解决数学问题时,教师应遵循认知规律,引领学生展开“具体→半具体半抽象→抽象”的概括式学习过程,经历“经验→模型→符号”的数学化的过程。
 
 
1.    [案例描述]
一位老师上20以内的退位减法“十几减9”,投影屏幕上显示公园里卖气球的场景,小朋友在买气球,总共有15个气球,卖掉了9个,先让学生提出数学问题,再列出算式15-9,接着放手让学生尝试、探索计算方法,最后组织小组交流算法,结果有5种不同的方法:①15-10=5  5+1=6  ②10-9=1  1+5=6  ③9+6=15  15-9=6  ④5-5=0  10-4=6  ⑤5-4=1  10-5=5  1+5=6,这位老师提问:在这些方法中,你喜欢哪一种方法?为什么?学生的回答,老师统统是微笑、点头、赞许,没有评价哪一种方法最好,接下来的练习,又允许学生选择自己喜欢的方法来做。
答:这位老师能从学生经验出发,因材施教,为个性化学习提供了开放空间,体现了以学导教,使“不同的学生学习不同的数学”,尊重学生的意见,小心呵护,老师有新课标理念;体现了学生是数学学习的主人,老师是数学学习的组织者、引导者、合作者;学生学习数学是自我建构的过程,除了他自己,任何人都无法代替。
 
2. [案例描述]
课堂上当老师一宣布小组讨论、交流,前排的学生唰地回头,满教室都是嗡嗡的声音,四人小组里,每个人都在张嘴,谁也听不清谁在说什么,一分钟后,老师一喊“停”,学生立即安静下来。
答:片面追求合作学习,重议轻思,生无独立思考,要先思后议;
重说轻听,听有利于取长补短,引导学生倾听,做文明的小听众;
重说轻评,忽视了学生与学生的评价。
小组合作学习注意独立思考(20—30秒)听他人说什么注意让学生评价。
合作学习不仅是相互说说,而要让不同的人在数学上得到不同的发展;学生的数学活动应当是一个生动活泼,主动的和富有个性的过程。
 
3、[案例描述]
一年级上册P34《跳绳》(8和9的加减法)的主题图上有:1幢教学楼,教学楼边上有1面五星红旗和许多树木,操场上有8个小朋友在跳绳,问题是“说一说”。下面是教师B按教材教的教学片断:
①出示挂图。
②提问题。
师:看了这幅图,你发现了什么?
生1:我看见了房子?
师:你真能干。
生2:我发现了红旗。
生3:我发现了树木。
生4:我发现了小朋友在跳绳。
生5:我发现了地上有小草。
……
教师不管学生如何回答,都一一加以肯定,以示教学的民主。待过了5分钟,教师急忙抛出:“谁能提出有关8的加减法?”
答:我们广大教师在设计问题时,首先考虑到的是问题的开放性,在数学探究过程中,设计出了大量的开放性的,具有一定思维空间的问题。但是,这些问题同样存在了目的性不强,答案不着边际的弊端,学生在回答这类问题时,出现了这样那样的答案,老师对他们的回答只能作出一些合理性的评价,但是,学生的回答,和老师的评价使得我们的数学课堂离我们心目中的理想的数学课堂却越来越远。所以我们老师在设计问题题不仅要充分考试问题的开放性,更要考虑设计问题的目的性,你设计的问题应当明确,具体可测,大部分学生能寻求到比较正确的答案。
 
4、[案例描述]  平行四边形面积公式推导的教学片断:
⒈教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢?
⒉学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。 
答:作为新课程倡导的三大学习方式之一,小组合作学习在形式上成为了有别于传统教学的一个最明显特征。它有力地挑战了教师的“一言堂”的专制,在课堂上给了学生自主、合作的机会,当前,很多教师都已经有意识地把它引入课堂,但很多时候的小组合作只是作了个形式而已。 
在组织小组合作学习前,你可以先回答下列问题:(1)为什么这节课(或者这个环节)要进行小组合作学习?不用可以吗?(2)如果要用,什么时候进行?问题怎么提?大概需要多少时间?可能会出现哪些情况?教师该如何点拔、引导?(3)如何把全班教学、小组教学、个人自学三种具体的教学形式结合起来,做到优势互补?(4)学习中,哪些内容适合进行班级集体教学、哪些内容适合小组合作学习、哪些内容适合个人自学?
小组合作学习与传统的教学形式不是替代的关系,而是互补的关系。广大的教师在小组合作学习的研究和实践中要有一个科学的态度,不要从一个极端走向另一个极端,从而将传统的教学形式说得一无是处。不讲原则的过多的合作学习也可能限制学生思考的空间,对学生个人能力的发展也是不利的。
 
5、[案例描述]
北师大版三年级上册《需要多少钱》(两位数乘一位数的口算)的教学片断:
①    出示买卖的情境图(图标有泳圈的单价12元,篮球的单价15元)。
②    引导学生提出数学问题。
③    探索算法多样化。
师:买3个球需要多少钱?算式怎样列?
生:15×3=
师:应该怎样算呢?
生1:我用加法15+15+15=30+15=45(元)
生2:我用乘法10×3=30  5×3=15  30+15=45(元)
生3:把15看成3个5,共有9个5,得45(元)
师:你喜欢用什么方法?
生1:用加法。
师:用加法也可以。
生2:用乘法。
师:好的。
④练习13×3  70×5  24×2  13×5  31×3  34×2   24×4
师:你喜欢用什么方法就用什么方法。
学生练习时笔者观察了7位小朋友所用的方法,其中有4位是采用加法的……  
 [案例分析] (主要从算法多样化与优化的层面上加以分析):
答:有的教师认为,如果对算法进行优化,那就谈不上算法多样化,似乎多样化与优化之间存在矛盾。其实不然,方法和方法之间根本不存在优劣之分,任何优越性与不足都是与一定的环境相联系的。算法优化是学生个体的学习、体验与感悟的过程,不是群体或教师的优化。对个体而言,是个体对原有的计算方法优化的过程,是个体思维发展、提高的过程。如果不对算法进行优化,那么我们的学生就没有收获,没有提高。
在优化算法的过程,教师必须注意两点:第一,优化的主体是学生,要尊重学生的想法,教师应把选择判断的主动权交给学生,优化的过程是学生自我完善的过程,产生修正自我的内需,从而“悟”出属于自己的最佳方法。教师在评价算法时,不要讲“优点”,而要讲“特点”,把优点让学生自己去感悟,这才能达到优化的目的。第二,教师要明确“优化”并不是统一一种方法,把优化的过程作为引导学生主动寻找更好方法的过程,尊重学生的选择,只要学生认为合适、自己喜欢,教师就应加以肯定和鼓励。
 
6.案例描述:
有一节“100万有多大”的数学课,教师设计了许多“100万”的实例.其中有一个是“100万颗米粒”让学生感到体积“很大”,另有一个是“100万个细胞”让学生感到体积“很小”.课堂小结时,有学生说:通过今天的学习,我知道了“100万”可以很大也可以很小.教师肯定了该学生的回答,并表扬了这种辨证的观点.试分析该教师的做法是否正确?“100万有多大”这节课的教学核心是什么?
答题要点:
 该教师的做法不正确,他混淆了“数大”与“量大”的概念。
“100万有多大”这节课的教学核心是:感受大数.简单地说,就是要让学生感受到“100万”是一个很大的数.
 
 
 
1、案例描述
两位教师上《圆的认识》一课。
    教师A在教学“半径和直径关系”时,组织学生动手测量、制表,然后引导学生发现“在同一圆中,圆的半径是直径的一半”。
    教师B在教学这一知识点时是这样设计的:
    师:通过自学,你知道半径和直径的关系吗?
    生1:在同一圆里,所有的半径是直径的一半。
    生2:在同一圆里,所有的直径是半径的2倍。
    生3:如果用字母表示,则是d=2r。r=d/2。
    师:这是同学们通过自学获得的,你们能用什么方法证明这一结论是正确的呢?
    生1:我可以用尺测量一下直径和半径的长度,然后考查它们之间的关系。
师:那我们一起用这一方法检测一下。
……
    师:还有其他方法吗?
生2:通过折纸,我能看出它们的关系。
……
思考题:
(1)两案例的主要共同点是什么?
(2)是否真正了解学生的起点?
(3)从线性与非线性的观点分析两教法。预测两教法的教学效果。
案例分析:
两个案例都注重学生的实践操作,注重了学生的认知过程。从当堂的教学效果看,前者课堂气氛沉闷,学生是被教师牵着鼻子做;而后者课堂气氛活跃,师生关系融洽,学生操作积极投入。同样是采用了体现学生主体性的教学形式——实际操作,为何效果迥异?笔者认为其中的原因是:教师是否真正掌握了教学设计的要素,是否真正了解学生,真正找到了适合学生学习的教学方式。
对于六年级学生而言,“半径和直径关系”通过自学已经明了。而教师A无视学生的学习能力,以为学生未知,引导学生操作;面对已知结果的操作探索,学生索然无味,激不起操作的热情。教师B则充分正视学生的现实,调整教学思路,把对未知的探索变为对已知的思辨。
教师设计,是学生不断激活“内存”的过程。建构主义是非常强调个体的经验的,个体的一切学习活动都是以经验为基础展开的,让学生充分调集和展示经验,是师生高效对话的前提。我们不仅要充分承认学生不是一张白纸,还要尽可能了解学生已经有了哪些颜色。很明显,第二位老师已经为学生创设了一次成功的数学活动,我们可以预测这样的活动一定能让学生感受到了数学的无穷魅力。这种魅力,一方面是因为它承接了学生原有的认知经验,学生感受到数学很简单、很日常、很好玩,有信心,有兴趣去学习。另一方面,学生通过多感官的活动,探究这些亲切有趣的现象背后的原理,建立一定的数学模型,培养一定的数学能力,由此得到更多的发展空间和持续动力。
2、案例描述:
教学“乘数是三位数的乘法”时,原题的内容是一个粮店三月份售出面粉674袋,每袋25千克,一共售出面粉多少千克?这样一道例题让学生感觉与自己生活太远,和白己的关系又不是很密切,所以不能激发学生学习的兴趣,如果照着原例题讲,学生肯定会觉得枯燥无味。于是,我们联系学生的生活来进行延伸。上课伊始,就让学生猜测一个滴水的水龙头每天要白白流掉多少千克水?学生们一听是生活中经常能遇到的事情,兴趣盎然,有的猜测5千克,有的猜测10千克,还有的猜测20千克,有个别学生看到了课后的内容说出来是12千克。教师接着问,照这样计算,一年要流掉多少千克水?学生马上算出平年是4380千克,闰年是4392千克。随着计算结果的出现,学生觉得非常吃惊:“哇!这么多呀!”看着学生吃惊的样子,教师又提出新的要求:“你家所住的楼房一共有多少户?如果按一家一个水龙头计算,一年要白白流掉多少水?”
思考题:原题与改动后的题目比较有什么异同(包括与学生生活的联系、目标的维度、教学效果)?
案例分析:虽说都是“乘数是三位数的乘法”的应用题,但是由于学生对来源于生活的素材感兴趣,所以他们感觉不难而且有趣,同时体现了课程综合化要求,使学生受到了节约用水的教育。这样,把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,使学生积极主动地投入到学习生活中,让学生发现数学就在自己身边,从而提高了学生用数学思想来看待实际问题的能力。
 
3、案例描述
北师大版二年级下册“派车”的教学片断:
(1)出示问题:假期里,我们班将组织25名优秀学生进行社会实践夏令营,学校安排面包车、小轿车两种车接送。其中面包车每辆限乘8人,小轿车每辆限乘3人。假如你是老师,你将如何派车?
(2)学生独立思考后并在小组内交流。
(3)学生汇报:
生1:派2辆面包车和3辆小轿车,算式:2×8=16(人) 3×3=9(人)。
师:掌声鼓励!
生2:派4辆面包车,留7个坐位放行李。算式:8×4-7=25(人)
生3:派5辆面包车。
师:说说你的理由。
生3:每辆面包车坐5人,留3个坐位放行李,算式:5×5=25(人)
师:也可以!
生4:派6辆面包车,其中5辆面包车每辆坐4人,一辆坐5人,空位放行李。
……
学生海阔天空的答,而教师不管学生如何回答,都一一加以肯定,以示教学的民主,体现“鼓励解决问题策略的多样化”。待过了20分钟,学生说出了11种派车方案(其中有8种方案空位超过一辆车的坐位)时,教师小结并布置了练习:同学们真能干,想出了这么多的方案,每种方案都有自己的特色。如果增加4位教师,共有29人,你又会怎样派车呢?……
案例分析(从解题策略多样化要注意的有关问题的角度分析):
解决问题策略的多样化是对几十个人去解决同一个问题而言的,并不是每一个学生都要求能用不同的方法去解决同一个数学问题。因此,对于学生个体来说,不同学习能力的学生应有不同的要求,学习能力低的学生只要求能用一种方法解决问题,学习能力高的学生要求用不同方法解决同一问题。
过于追求算法多样化,往往会造成学生对每种算法的理解不够深入,思维仅仅停留在横向的比较层面上。而现在一般强调的算法要优化,实质是为了使学生的思维能够纵向地、深入地发展,同时算法的优化也有利于更好完成一堂课的教学目标,如本课“寻求租车的多种方案”的目标。因为优化的方法往往是已经公认的、适合大多数学生掌握的、有推广和使用价值的方法,学生只有在掌握优化方法的前提下,才有可能去完成熟练的技能。
 
4、案例描述 :
师:(呈现一个长方形和一个正方形)这两个图形分别是什么?
生:左边的是长方形,右边的是正方形。
师:今天我们继续学习长方形与正方形。
师:(边比划边说)通过折一折量一量,你能发现长方形与正方形的边有什么特点,用直角三角板的直角量一量长方形与正方形的四个角,你能发现什么?
(学生以四人小组为单位根据教师提供的材料与指定的方法探索)
生1:我们组发现了长方形对边相等,四个角都是直角。
师:通过什么方法发现的?
生1(边比划边说):用尺子量、用折纸的方法发现了长方形的对边相等、正方形的四条边相等,用直角三角板的直角量长方形和正方形的角,发现四个角都是直角。
师:还有不同的吗?
生2:我们组是用绳子量的方法发现长方形的对边相等、正方形四条边相等的。
案例分析(从问题的品质的角度分析):
一是应当明确、具体可感;
二是应当具有思考价值;
三是要关注多维教学目标的达成;
四是问题要具有情境功能。
 
5、案例描述
师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱?
师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决?
淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?)
 师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定)
师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。
(1)学生独立思考,自主探索。
(2)在独立思考的基础上,小组交流。
(3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗?
(4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?”
(5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。
 师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。
问题讨论
(1)“小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?  直接安排学生尝试,对学生理解小数加减法是否有帮助?
(2)教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么?
(3)书中三种算法的共性是什么?为什么要让学生讨论这个问题?
 案例分析(围绕上述问题分析)
1. 学习小数加法,先安排整数加法的内容,通过解决这个问题,激活学生已有的多位数加法的经验,帮助学生确定学习的心理趋向,找到新旧知识联系的桥梁,有利于新知的同化。但这样一来,就降低了探索的难度,也容易束缚学生的思维,问题也就没了挑战性。
直接安排学生尝试,让学生经历从独立审题到列出算式的过程,确保每个人都有独立思考的时间,然后交流。先做后说,把教师的教建立在学生思考交流的基础之上,学生对小数加减法的理解会更深刻。
2、在小组交流的基础上,再解读教材,可以让学生在解读过程中进一步明晰思路,反思自己的成功与不足。对于理解不到位的,通过读书可以促进对问题的理解。
3、讨论各种算法的共性,是为了突出算理:相同单位的数量才能相加。 
 
 
 
1、案例描述:这样的合作有效果吗?
场景1
一位教师在教学“两位数减一位数的退位减法”一课时,在学生根据情境列出16-7这样一个算式之后,马上让同学们以小组为单位,讨论应该怎样计算16-7。
场景2
某校四年级六班有56名同学,老师在教学实践活动课“秋游计划”一课时,在让学生合作制订购买秋游所需物品及所需钱数之后,又设计了一个活动——乘车与买门票。“一辆大客车可坐50人,每辆300元;一辆中型客车可坐30人,每辆200元。个人票每人10元,团体票每人8元(10人为一组)。”让学生根据教师提供的这些数据,讨论交流应该怎样租车、怎样购买门票比较合理(在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器)。
场景3
一位教师在教学二年级数学课“克和千克”一课时,让小组合作称自己感兴趣的东西。在小组汇报时,有一个学生说:“我称的是竖笛,它的重量是8克。”老师问道: “是8克吗?”坐在旁边的学生提醒了一下:“它的重量是85克。”这名学生终于说出了合理的答案。
思考题:场景1的合作缺少了什么?场景2在第二次合作学习时,有的学生在继续计算买哪些吃的更好,有的在互相玩计算器的主要原因是什么?场景3中为什么会出现第一次说是8克而第二次说是85克的情况呢?
案例分析 :
《全日制义务教育数学课程标准》中明确指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”于是与其相适应的教学组织形式——小组合作学习,被越来越多地引入课堂,合作交流成了学生学习数学的重要方式。这样的学习方式充分体现了教学民主,给予了学生更多自由活动的时间和相互交流的机会。但是“合作”必须建立在学生个体“需要”的基础之上,只有学生经过独立思考,有了交流的需要,再开展合作学习才是有价值的、有成效的。
现象1中,由于学生没有独立思考的时间,也缺少合作交流的愿望,尽管教师安排让学生进行合作学习,但由于时机把握得不好,不可能达到合作学习的目的。
现象2中,学生第二次合作学习的效果不会理想,有的学生会继续计算买哪些吃的更好,有的会互相玩计数器。出现这种现象的主要原因是第二次合作学习的时机不当,大多数学生仍然沉浸在第一次合作学习的情境之中,因而降低了学习效率。
现象3中为什么会出现第一次说是8克而第二次说是85克的情况呢?因为二年级的学生无法通过常识来判断自己汇报的数据是否正确,那么他的数据的惟一来源就是测量的结果。之所以出现这样的错误,是因为小组里没有人做记录。这不仅涉及到对测量数据的严谨科学态度的养成问题,更在于小组里没有明确的分工,因而也就没有真正意义上的合作。这样一来,合作学习真正的价值就被抹杀了。
 
2、案例《长方体和正方体的认识》的教学过程片断:
⑴为长方体和正方体的棱、顶点下定义。
⑵通过动手操作得出长方体和正方体的面、棱、顶点的个数。
师:请同学们拿出准备好的长方体的模型,闭上眼睛摸一摸,睁开眼睛看一看、数一数,长方体有几个面?几条棱?有几个顶点?
(生按要求操作并回答)。
课后笔者进行了一个小调查:
调查对象:还没有学习《长方体和正方体的认识》的同一个学校、同一个年级的五(3)班学生。
调查内容:长方体有()个面,有()条棱,有()个顶点(学生填空前先学习长方体的面、棱、顶点的概念)。
调查结果:全班56人,六个面答对的有50人,12条棱答对的有37人,8个顶点答对的有51人。
案例分析:
现代心理学家认为:思维的发展都是经历直观行动思维    具体形象思维    抽象逻辑思维这样三个阶段。一二年级学生以直观行动思维为主,具体形象思维逐步上升;到三四年级,具体形象思维逐渐开始为主;到五六年级,具体形象思维与抽象逻辑思维相互补充和渗透。
上述案例中的问题情境,如果用在小学一年级 “ 认识物体 ” 的教学中,通过摸一摸、看一看、数一数和想一想的体验,使学生初步了解长方体、正方体的简单特点,是符合学生思维能力培养的阶段性特点的,无论是在探索知识规律方面,还是在培养学生的思维能力方面都是无可厚非的。但对五六年级的学生来说,滥用这样直观性的问题情境,将会抑制学生思维能力的提升。
在小学高年级空间与图形教学中,要逐步培养学生手中无物体,脑中想物体的良好习惯。如上例,当教师提出长方体有几个面的简单问题时,学生脑中应有一个长方体,通过对前后、左右、上下的思考得出长方体有 6 个面的结论。只有当有些学生想像受阻时,才设法引导他们看长方体的实物,通过看一看、数一数来完成。
创设的问题情境的直观性程度应依据不同阶段学生的思维特点,不同层次学生的思维水平,不同难易程度的学习材料来确定,决不能搞一刀切。创设问题情境力求做到直观性和形象思维、抽象思维活动相结合,力求保证学生的具体思维与抽象思维之间有着紧密的联系。也就是说创设的问题情境要处理好直观性与培养学生思维能力阶段性的关系。
 
3、创设问题情境的案例:《小数的性质》
(一)案例A:联系生活,教师提出问题
师:同学们在购物中见过小数吧!大家相互交流一下。(交流购物中标签上的小数)
生:一个文具盒标价6.50元。
师:那你买这个文具盒付了多少钱?
生:6元5角,也就是6.5元。
师:这说明6.50元=6.5元。它们为什么会相等呢?下面我们就来研究这个问题。
(二)案例B:联系生活,学生提出问题
师:同学们都有购物的经历,你们还记得所买物品的单价和实际付的钱数吗?
生:一个文具盒标价6.50元,我买它时付了6元5角,也就是6.5元。
师: 标价6.50元,而你付6.5元,商家不吃亏吗?
生:不吃亏,因为6.50元=6.5元。
师:其他同学也遇到过这种现象吗?
生:一包薯片标价2.00元,我买它时付了2元。2.00元=2元
师:看来这种现象在生活中还真不少。同学们有疑问吗?
生:为什么6.50元=6.5元,2.00元=2元?为什么后面的零的可以去掉?
师:是啊!同学们,你们知道吗?这些看似简单的生活现象,它里面却隐藏着一个数学规律。这个规律是什么呢?下面我们就来一起发现它。
(三)反思:
1、案例A教师联系生活,让学生交流购物中的小数,问题较大,不能引起学生有目的地思考。另外,教师没有引导学生很好地审视生成的资源6.50元=6.5元,学生只是从表面顺着老师的提问走,没有做进一步的思考。
2、案例B依然是联系学生购物这一经历,但教师问“标价6.50元,而你付6.5元,商家不吃亏吗?”这一问让学生的思维提升了一个层次,学生只能借助经验知道6.50元=6.5元,2.00元=2元。但从数学的角度思考,学生会产生疑问:为什么6.50元=6.5元,2.00元=2元?为什么后面的零的可以去掉?当学生提出这样的疑问时,其实已对小数的性质有了初步的感知,在此基础上,教师揭示出生活现象里隐藏着数学规律,然后和学生一起去探索。
3、我们在创设问题情境时,不仅要考虑联系生活,激发兴趣,更要引导学生用数学的眼光观察生活,发现其中的数学问题,使学生的思维水平不断得到提升。
 
4、提出问题的教学案例:《买书—两位数加一位数进位加法》一年级下册
(一)案例A
创设情境后
师:你们能根据以上信息提一些数学问题吗?
生:×比×多几本?
师:好的,还有吗?
生:×比×多几本?
师:还有不同的提法吗?
生:×、×、×、×一共多少本?
师:两个相加的问题还能提吗?
生:×和×一共多少本?(得出要解决的问题)
(二)案例B
创设情境后
师:你们能根据以上信息提一些数学问题吗?
生:×比×多几本?
师:还是这两本书,你能提一个加法问题吗?
生:×和×一共多少本?(得出要解决的问题)
师:像这样的问题,你还能再提吗?
生:……
师:这个问题同学能解答吗?
(三)反思:
1、在案例A中,以一句“还有吗?”来要求学生进一步思考,学生的回答基本限于第一位同学的思路作简单的复制。造成以上现象的原因是:教师引导没有到位,语言单一;没有及时引导;没有及时利用课堂上生成的资源。
2、在案例B中,教师根据学生的回答,及时引导,要求能否用同样的条件,提出不同的问题,这样就促使学生从另一个角度进行思考,避免思维的简单复制。从课堂教学的进程来看,案例B比较快地切入到两位数的算法研究,从而避免了案例A中学生看似反映热烈,实质却迟迟进不了课堂主题,学生的思维也往往在同一个层次作简单重复的现象。
3、课堂是让学生自己提问题,但不能完全放任学生,在这个过程中老师要适时介入,把握时机,当问则问,并注意实效性。
 
 
有人说:“教材是专家编的,我们老师在实际教学中只能老老实实地去执行教材,而绝对不能擅自作主去改编甚至创编教材。”你认为这种说法对吗?为什么?
答:我认为这种说法是错的。因为新课程背景下出台的一些新的小学数学课堂教学评价标准表中,明确提出了“看教师是否具有整合、变通有利于教学的各种课程资源,‘跳’出学科进行大教学“(即用活教材)的要求。新课程下的教材观认为:教材不应该成为教师教和学生学的“枷锁”和“桎梏者”,而应该成为“跳板”和“促进者”。因此,走下神坛的教材不再是“神圣”不可侵犯的了,教师也应该由教材忠实俄执行者自觉升格为教材的实践者、改进者和创造者。教师的义务不再是机械地照搬教材,而是应该自觉地根据学生、教材、教学条件等实际情况,有机地整合各种教学资源,创造性地使用教材。

根据所学的数学学习评价方法,谈谈自己如何更好地做好学生数学学习评价工作?
答:1、建立评价目标多元、评价方法多样的评价体系;
  2、对数学学习的评价要关注学习的结果,更要关注他们的学习过程;
  3、要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
练习设计中要注意哪些问题?
答:①练习要有目的性,要围绕教学重难点设计练习,要针对学生存在的问题展开练习。
②练习要有层次性,练习的设计要由易到难,由浅入深,由单一到综合,要有一定的坡度。多层训练有利于暴露差异,发展学生的思维能力。
③练习要多样性,练习的形式多样,有利于学生学习兴趣的激发和思维的发展,培养灵活应用知识和解决问题的能力。
④练习要有反馈调节性,及时反馈了解学生练习的情况,适当调整练习。
⑤练习要面向全体学生,无论做什么练习都要面向全体学生,让全体学生都有练习的机会,都能得到提高。
⑥练习的份量要适中,做到质与量的兼顾。
     ⑦练习设计要有弹性,能促进各个层次的学生的发展,让每个学生都得到不同的收获。
 ⑧练习设计中要加强知识的应用性和开放性,体现新课程标准的理念。
※ 请你从好课标准中“真实”的纬度来谈谈你对本案例的看法。
在《分数乘除法应用题整理和复习》一课的延伸拓展环节,教师要求学生编一道分数乘除法应用题来说一说分数乘除法在日常生活中的应用。
生1:学校放学后,我和王亮在公路上练习长跑,我跑了15分钟,比王亮多用1/4,王亮跑了12分钟。
生2:李俊的爸爸上个月捕青蛙,卖了240元钱,这个月卖的钱比上个月多1/6,这个月卖了280元。
生3:小红和小军看一本故事书。小红从前往后看15小时看完,小军从后往前看10小时可以看完。两人同时看6小时可以看完。
教师对此一一予以肯定。
首先,教师放手给孩子一个创造的空间,一个运用知识解决生活实际问题的空间,这本是新课程应有之义。但是,小学生由于生活经验的局限,对生活的认识还很幼稚、肤浅,不能完全摆脱课本例题与教师讲解的束缚,他们往往满足于提出一个问题和解决问题,而较少去考虑提出的问题是否合乎情理,合乎法律,解题的结果是否可信。在本案例中,学生在马路上赛跑的不安全性,捕青蛙卖钱的违法性,看书从后往前看的不合理性,都被学生忽略了。更糟糕的是,课例中的老师或许是疏忽,或许是出于保护学生学习积极性、激发学生的创新意识的良好愿望而作出肯定的判断。归根结底来说,就是教师没有用新与学生交流,是对学生表面情感上的“呵护”,实质情感上的“蹂躪”。有不同意见请与耿兴国联系 QQ421790883
※.下面陈述的是一道考察三年级学生应用计算技能解决实际问题的试题。请分析该道试题的优点,并结合案例和教学实际谈谈如何编制试题测验学生数学技能的掌握情况?
这是一道美国三年级试题:小明为全家买了3张参观动物园的票,价格最低的一张为3元钱,价格最高的一张为5元钱,下列哪一个可能是3张票的总价钱?
A.8元     B.9元    C.13元    D.15元
这道试题不同于我们常常给学生训练的已知三个数求和的计算式题。虽然试题在计算能力的要求上远远低于我们,但它留意了与生活实际的联系。表现在问题是生活中可能出现的,考虑问题时应紧密结合动物园门票价格的实际情况,成人票价应略高于儿童票。只有联系实际情况,才可能给出最合理的答案。技能的把握必需建立在相关的概念知识的基础上,而不是通过机械地模拟和记忆去获得。评价技能是否把握的试题既要调查学生实际执行这些技能的情况,又要调查学生是否能准确思索在什么情况下应该使用哪个规则,以及什么时候应用这一规则。所以再出考试命题时应重视联系学生的现实生活与理想,考查学生运用所学知识分析,解决现实问题的能力和水平。此案例即能测验学生的技能有能引导学生关注生活中的数学问题
※下面是某校一年级口试的一道题目,请你分析该道口试题的优点,并谈谈口头型考试评价的特点。
例:把下面的诗抄写在右边的田字格里,能写得下吗?为什么?
 一去二三里,  烟村四五家,  亭台六七座,  八九十枝花。
这道试题,可以观察学生的思维水平的不同层次。
第一层:学生通过实际的抄写,发觉当田字格写满时,诗还没有抄写完,因此得出“写不下”的结论。这一层次的思维水平,学生更多地依赖动作思维,但从解决问题的策略来看,这种方式也不失为一种策略。
第二层:学生通过数诗的字数及田字格的格数,发现诗有20个字,而田字格只有16个,通过比较20〉16,所以得出“写不下”的结论。这一层次的思维水平,学生已经初步建立数的概念,知道可以通过比较数的大小来解决相关问题。
第三层:学生通过观察发现诗的行数与田字格的行数相等,但诗每行的字数比田字格每行的字数多1,因此得出“写不下”的结论,这一层次的思维水平,学生初步建立一一对应的关系,会对问题进行分解,从而提高解决问题的策略水平。
该口试题选择了低年级学生在学习过程中经常遇到的现实问题作为题材,学生感到比较亲切,但一年级学生的书面文字表达能力跟不上,因而作为笔试题难以观察到学生的真实水平,采用口试的形式,却取得了非常好的效果。
 
 
(摘自前郭进修学校杨晓丽个人空间)
分享到:
  相关阅读
中国教育新闻网2017年度“影响教师的100本书”书目 2017/12/29
研究:好斗性格源自遗传 6岁后受环境影响 2017/12/27
书法进课堂 师资普遍缺 2017/12/21
加强社会主义核心价值观网上传播 2017/12/19
“工匠精神”,职业教育的灵魂 2017/9/12
一位战略科学家的追梦人生 2017/9/12
浮夸的“感恩宣讲”离真正的教育还很远 2017/5/31
传统习俗的继承要身体力行才好 2017/5/31
父母望子成龙,早教不应盲从 2017/5/26
教育更要注重培养学生的思维能力 2017/5/25
热点信息
国培计划(2014)”——吉林...
小学数学教学案例
教育科研课题立项·评审表二例
松原市名师培养对象人员名单

近期发布
市教育学院组织召开2019年下半年工作会议 ...
“让生活中的科学伴随孩子...
关注核心素养,打造名优教师
2019年松原市普通高中教学新...
松原市2019年综合部各学科教...
市委第三巡察组巡察松原市教育学...
松原市初中教学新秀评选、省名师...
2018年起北京调整中考科目
中国教育报中国教育电视台联合评...
中国教育新闻网2017年度“影...
年度盘点:2017年度十大教育...
CopyRight 2013 syjsyx.com All Right Reserved 松原市教育学院 版权所有
地址:吉林省松原市宁江区沿江街717号 电话:0438-6190789 (投稿)E-mail:keyanchu11@163.com
吉ICP备09002781号